ANALOG ELECTRONIC CIRCUITS LAB MANUAL

III SEMESTER B.E (E & C)

(For private circulation only)

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS & COMMUNICATION

SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY

MARLUR, TUMKUR-572105

CONTENTS

Experiment No	Page. No
1. RC coupled amplifier	2
2. Darlington Emitter Follower	8
3. Voltage Series Feedback Amplifier	14
4. RC Phase shift Oscillator	22
5. Hartley & Colpitt's Oscillator	26
6. Clipping circuits	30
7. Clamping circuits	40
8. Op-Amp applications	46
9. ZCD & Schmitt trigger	50
10. Full wave Precision Rectifier	54
11. Voltage Regulator	56
12. Digital-Analog Converter	60
13. Analog-Digital Converter	64

Circuit Diagram :-

Design:-

Given: $V_{CC} = 15 \text{ V}$; $I_C = 1 \text{ mA}$; $A_V = 50$; $f_L = 500 \text{ Hz}$; Stability factor = [2–10]. Gain formula is given by,

$$A_V = \frac{-h_{fe} R_{Leff}}{h_{in}}$$

Assume, $V_{CE} = \frac{V_{CC}}{2}$ (Active condition); $V_E = \frac{V_{CC}}{10}$

Effective load resistance is given by $R_{\text{Leff}} = R_C || R_L$.

Internal emitter resistance is given by $r_e = \frac{26 \,\text{mV}}{I_E}$

$$h_{ie} = \beta r_{e}$$

where r_e is internal emitter resistance of the transistor.

$$h_{ie} = h_{fe} r_e$$

On applying KVL to output loop, we get

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

$$V_E = I_E R_E$$

$$R_C = ?$$

where

Experiment No: DATE://

RC COUPLED AMPLIFIER

<u>AIM</u>: -To design a RC coupled single stage FET/BJT amplifier and determination of the gain-frequency response, input and output impedances.

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Set Vs = 50mV (assume) using the signal generator
- 3. Keeping the input voltage constant, vary the frequency from 0Hz to 1MHz in regular steps of 10 and note down corresponding output voltage.
- 4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
- 5. Find the input and output impedance.
- 6. Calculate the bandwidth from the graph.
- 7. Note down the phase angle, bandwidth, input and output impedance.

The emitter current is given by the equation $I_E = I_B + I_C$. Since I_B is very small when compared with I_C ,

$$I_C \approx I_E$$

$$R_E = \frac{V_E}{I_E} = ?$$

The voltage at the base of the transistor is given by

$$V_B = V_{BE} + V_E$$

From voltage divider rule, the voltage at the base of the transistor is given by

$$V_B = V_{CC} \frac{R_{B2}}{R_{B1} + R_{B2}}$$

The equation for stability factor is given by

$$S = 1 + \frac{R_B}{R_E}$$

Find R_B

$$R_B = R_{B1} \parallel R_{B2}$$

From equations (i) and (ii), solve for R_{B1} , and R_{B2} Input coupling capacitor is given by,

$$X_{Ci} = \frac{\left(h_{ie} \parallel R_B\right)}{10}$$
$$X_{Ci} = \frac{1}{2\pi f C_i}$$

$$C = ?$$

Output coupling capacitor is given by

$$X_{C0} = \frac{R_C \parallel R_L}{10}$$

$$X_{C0} = \frac{1}{2\pi f C_0}$$

$$C_0 = ?$$

By-pass capacitor is given by, $X_{CE} = \frac{R_E'}{10}$

where,

$$R'_{E} = \left[R_{E} \parallel \frac{\left(R_{B} + h_{ie} \right)}{h_{fe}} \right]$$

$$X_{CE} = \frac{1}{2\pi f C_{E}}$$

$$C_{E} = ?$$

General Procedure for Calculation:

1. <u>Input impedance</u>

- a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
- b. Connect ac voltmeter (0-100 mV) across the biasing resistor R_2 .
- c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
- d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

- a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected (V $_{load}$).
- b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected (V _{no-load}).
- c. Substitute these values in the formula $Z_o = \frac{V_{load} V_{no-load}}{V_{load}} \times 100\%$

3. Bandwidth

- a. Plot the frequency response
- b. Identify the maximum gain region.
- c. Drop a horizontal line bi –3dB.
- d. The –3dB line intersects the frequency response plot at two points.
- e. The lower intersecting point of –3dB line with the frequency response plot gives the lower cut-off frequency.
- f. The upper intersecting point of -3dB line with the frequency response plot gives the upper cut-off frequency.
- g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth = $f_h f_l$.

Model Graph (Frequency Response) :-

TABULAR COLUMN: -

Sl No.	Frequency	V _O (volts)	$Gain = V_O/V_i$	Gain (dB) = $20\log V_O/V_i$

Result :-

	Theoretical	Practical
Input impedance		
Output impedance		
Gain (Mid band)		
Bandwidth		

<u>Circuit Diagram :-</u>

DC Analysis :-

Experiment No: DA	TE:	//		
-------------------	-----	----	--	--

DARLINGTON EMITTER FOLLOWER

To design a BJT Darlington Emitter follower and determine the gain, input and output impedances.

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Set $V_i = 1$ volt (say), using the signal generator
- 3. Keeping the input voltage constant, vary the frequency from 0Hz to 1MHz in regular steps of 10 and note down corresponding output voltage.
- 4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
- 5. Find the input and output impedance.
- 6. Calculate the bandwidth from the graph.
- 7. Note down the phase angle, bandwidth, input and output impedance.

Design :-

Given
$$V_{CEQ} = V_{CE2} = 6v$$

 $I_{CQ} = I_{C2} = 5mA$

Assume
$$\beta$$
 for SL100 = 100 $$V_{\rm CC}=12v$$

$$V_{E2} = \frac{V_{CC}}{2} = \frac{12}{2} = 6v$$

$$I_{E2}R_E = V_{E2}$$

:
$$R_E = \frac{V_{E2}}{I_{E2}} = \frac{6}{5 \times 10^{-3}} = 1.2 \text{k}\Omega \ [\because IE_2 = IC_2]$$

$$\therefore R_E = 1.2k\Omega$$

$$VB_1 = VBE_1 + VBE_2 + VE_2$$

$$VB_1 = 0.7 + 0.7 + 6$$

$$VB_1 = 7.4v$$

$$IB_2 = \frac{I_{C2}}{\beta} = \frac{5 \times 10^{-3}}{100} = 0.05 \text{mA}$$

$$IB_1 = \frac{I_{C1}}{\beta} = \frac{I_{B2}}{\beta} = \frac{0.05}{100} = 0.0005 \text{mA}$$

$$10IB_1R_1 = V_{CC} - VB_1$$

:.
$$R_1 = \frac{12 - 7.4}{10 \times 0.0005 \times 10^{-3}} = 920 k\Omega$$
 [Use $R_1 = 1M\Omega$]

$$R_2 = \frac{V_{B1}}{9I_B} = 1644k\Omega$$

$$\therefore R_2 = 1.5 M\Omega$$

General Procedure for Calculation:

1. Input impedance

- a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
- b. Connect ac voltmeter (0-100 mV) across the biasing resistor R_2 .
- c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
- d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

- a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected (V $_{load}$).
- b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected (V _{no-load}).
- c. Substitute these values in the formula $Z_O = \frac{V_{load} V_{no-load}}{V_{load}} \times 100\%$

3. Bandwidth

- a. Plot the frequency response
- b. Identify the maximum gain region.
- c. Drop a horizontal line bi –3dB.
- d. The -3dB line intersects the frequency response plot at two points.
- e. The lower intersecting point of –3dB line with the frequency response plot gives the lower cut-off frequency.
- f. The upper intersecting point of -3dB line with the frequency response plot gives the upper cut-off frequency.
- g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth = $f_h f_l$.

TABULAR COLUMN: -

Sl No.	Frequency	V _O (volts)	$Gain = V_O / V_i$	Gain (dB) =20log V _O /V _i

4. To find Q-Point

- a. Connect the circuit as per circuit diagram
- b. Switch on the DC source [switch off the AC source]
- c. Measure voltage at $V_{\text{B2}},\,V_{\text{E2}}$ & V_{C2} with respect to ground

& also measure

$$\boldsymbol{V}_{\text{CE2}} = \boldsymbol{V}_{\text{C2}}$$
 - $\boldsymbol{V}_{\text{E2}}$

$$I_{C2} = I_{E2} = \frac{V_{E2}}{R_E}$$

$$Q - Point = [V_{CE2}, I_{C2}]$$

Result

	Theoretical	Practical
Input impedance		
Output impedance		
Gain (Mid band)		
Bandwidth		

Circuit Diagram :-**Amplifier without Feedback** +V_{CC} ≥R_{C2} C₀ V_i = 50mV Freq = (0-1) MHz C_{E2} ₹R_{E2} **Amplifier with Feedback** +V_{CC} ≯_{R_{C2}} R_{C1} С_с R_{E1}- $V_i = 50 \text{mV}$ Freq = (0-1) MHz C_{E2} R_{E2} \sum_{f_1}

Experiment No: DATE	:/_	/_	
---------------------	-----	----	--

VOLTAGE SERIES FEEDBACK AMPLIFIER

To design a FET/BJT Voltage series feedback amplifier and determine the gain, frequency response, input and output impedances with and without feedback

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Set Vs = 50mV (assume) using the signal generator
- 3. Keeping the input voltage constant, vary the frequency from 0Hz to 1MHz in regular steps of 10 and note down corresponding output voltage.
- 4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
- 5. Find the input and output impedance.
- 6. Calculate the bandwidth from the graph.
- 7. Note down the phase angle, bandwidth, input and output impedance.

Design (With Feedback):-

Given $A_{V1}=30$; $A_{12}=20$; $V_{CC}=10V$; $I_{E2}=1.8mA$; $I_{E1}=1.1mA$; S=3; h_{fe1} and h_{fe2} are obtained by multimeter $\beta=0.03$

DC Analysis of II Stage: -

$$V_{CC} = I_{C2}R_{C2} + V_{CE2} + I_{E2}R_{E2}$$

 $R_{B1} = (S-1) R_{E1} = ?$ $R_{B1} = R_1 \parallel R_2$ find R_1 and R_2

Input impedance is given by

 $Z_{i1} = R_{B1} \parallel [h_{ie1} + (1 + h_{fe1}) R_{f1}]$

Output impedance is given by

 $Z_{o1} = R_{C1}$

The feedback factor β is given by

 $\beta = \frac{R_{f1}}{R_{f1} + R_{f2}}$

where, $R_{f2} >> R_{f1}$ assume $R_{f2} = 10 \text{ k}\Omega$; find R_{f1} overall voltage gain is given by M and M assume M as M as

$$A_V = A_{V1} \times A_{V2}$$

Parameter Analysis with Feedback

The desensitive factor, $D = 1 + \beta A_V$ Output impedance with feedback is given by

$$Z_{of} = \frac{Z_{o2}}{D}$$

Input impedance with feedback is given by

$$Z_{if} = Z_{i1} \times D$$

The gain with feedback is given by

$$A_{Vf} = \frac{A_V}{D}$$

The output capacitor is given by

$$X_{C0} = \frac{Z_{o2}}{10}$$

where
$$X_{C0} = \frac{1}{2\pi f C_0}$$

 $C_0 = ?$

The input capacitor is given by,

$$X_{Ci} = \frac{Z_{i1}}{10}$$
where $X_{Ci} = \frac{1}{2\pi f_{Ci}}$

for active condition, $V_{CE2} = \frac{V_{CC}}{2}$ The voltage gain is given by

$$A_{V2} = \frac{-h_{fe2} R_{C2}}{h_{ie2}}$$

$$R_{C2} = ?$$

$$R_{E2} = \frac{V_{CC} - V_{CE2} - I_{C2} R_{C2}}{I_{E2}} = ?$$

$$V_{B2} = V_{BE} + V_{E2} = \frac{V_{CC}}{R_3 + R_4} \times R_4$$

$$S = 1 + \frac{R_{B2}}{R_{E2}}$$

$$R_{B2} = (S-1) R_{E2} = ?$$

$$R_{B2} = R_3 \parallel R_4$$

on solving (i) and (ii) Find R_3 and R_4 .

Input impedance is given by,

Output impedance is given by,

DC Analysis of I Stage

The voltage gain is given by

$$A_{V1} = \frac{-h_{fe1}(R_{C1} \parallel Z_{iC})}{h_{ie1}}$$

$$(R_{C1} \parallel Z_{i2}) = ?$$
Find $R_{C1} = ?$

 $Z_{i2} = (R_{B2} \parallel h_{ie2})$

 $Z_{o2} = R_{C2}$

Apply KVL to first stage,

$$V_{CC} = I_{C1} R_{C1} + V_{CE1} + I_{E1} R_{E1}$$
for active condition, $V_{CE1} = \frac{V_{CC}}{2}$

$$V_{E1} = \frac{V_{CC} - V_{CE1} - I_{C1} R_{C1}}{I_{E1}} = ?$$

$$V_{B1} = V_{BE} + V_{E1} = \frac{V_{CC}}{R_1 + R_2} \times R_2$$

$$S = 1 + \frac{R_{B1}}{R_{C1}}$$

The emitter capacitor of first stage is given by

$$X_{CE} = \frac{R'_{E1}}{10}$$
 where $R'_{E1} = R_E \parallel \left\{ R_{f1} + \left(\frac{R_{B1} + h_{ie2}}{1 + h_{fe2}} \right) \right\}$

The emitter capacitor of II stage is given by

$$X_{CE2} = \frac{R'_{E2}}{10}$$
where $R'_{E2} = R_{E2} \parallel \left(\frac{h_{ie2} + R_{B2}}{1 + h_{fe2}} \right)$

Model Graph (Frequency Response) :-

General Procedure for Calculation:

1. Input impedance

- a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
- b. Connect ac voltmeter (0-100mV) across the biasing resistor R₂.
- c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
- d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

- a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected (V $_{load}$).
- b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected (V _{no-load}).
- c. Substitute these values in the formula $Z_O = \frac{V_{load} V_{no-load}}{V_{load}} \times 100\%$

3. Bandwidth

- a. Plot the frequency response
- b. Identify the maximum gain region.
- c. Drop a horizontal line bi –3dB.
- d. The -3dB line intersects the frequency response plot at two points.
- e. The lower intersecting point of –3dB line with the frequency response plot gives the lower cut-off frequency.
- f. The upper intersecting point of –3dB line with the frequency response plot gives the upper cut-off frequency.
- g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth = $f_h f_l$.

TABULAR COLUMN: -

With Feedback ($V_i = 50 \text{mV}$)

Sl No.	Frequency	$Gain = V_O/V_i$	Gain (dB) = $20\log V_O/V_i$

Without Feedback $(V_i = 50mV)$

Sl No.	Frequency	V _O (volts)	$Gain = V_O/V_i$	Gain (dB) =20log V _O /V _i

Result

	Theoretical		Practical		
	With f/b	Without f/b	With f/b	Without f/b	
Input impedance					
Output impedance					
Gain (Mid band)					
Bandwidth					

Circuit Diagram:

Design

Given $f_0 = 1$ kHz; $C = 0.01 \mu F$, $V_{CC} = 12 \text{ V}$

$$f = \frac{1}{2\pi\sqrt{6}RC}$$

Find R

$$\beta(s) = -\frac{1}{29}$$

$$A = \frac{1}{\beta} = -29$$

Amplifier Design

Gain formula is given by,

$$A_V = \frac{-h_{fe}R_{Leff}}{h_{ie}}$$
 ($A_V = 29$, design given)

Assume $V_{CE} = V_{CC}/2$ (transistor Active)

Effective load resistance is given by, $R_{\text{Leff}} = R_C || R_L$

Emitter resistance is given by, $R_E = 26 \text{m V/} I_E$

$$h_{ie} = \beta r_{e}$$

 $h_{ie} = \beta r_e$ Where r_e is internal resistance of the transistor.

$$h_{ie} = h_{fe} r_e$$

$$V_E = V_{CC} \, / 10$$

Experiment No:	DATE: / /
Experiment 110.	D111E://

RC PHASE SHIFT OSCILLATOR

AIM: To design And test for the performance of RC Phase Shift Oscillator for the given operating frequency f_O .

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram (both oscillators).
- 2. Switch on the power supply and observe the output on the CRO (sine wave).
- 3. Note down the practical frequency and compare with its theoretical frequency.

on applying KVL to output loop, we get

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

where $V_E = I_E R_E$

Find R_C

Since I_B is very small when compare with I_C ,

$$I_C \approx I_E$$

$$R_E = V_E / I_E$$

$$V_B = V_{BE} + V_E$$

$$V_B = V_{CC} \frac{R_{B2}}{R_{B1} + R_{B2}}$$

$$S = 1 + \frac{R_B}{R_E}$$

Find R_B

Find R_{BI} and R_{B2}

Coupling and by-pass capacitors can be found out by,

Input coupling capacitor is given by, $X_{Ci} = \{ [h_{ie} + (1 + h_{fe}) R_E] \parallel R_B \} / 10$

$$X_{Ci} = \frac{1}{2\pi f C_i}$$

 $R_B = R_{B1} \parallel R_{B2}$

Find C_i

$$X_{C0} = \frac{1}{2\pi f C_0}$$

Find C_0

By-pass capacitor is given by, $X_{CE} = R_E/10$

$$X_E = \frac{1}{2\pi f C_E}$$

Find C_E

Result

	Theoretical	Practical
Frequency		

HARTLEY OSCILLATOR:-

DESIGN:-

$$f = \frac{1}{2\Pi\sqrt{LC}}$$
, where L=L1+L2

Assume
$$\frac{L2}{L1}$$
 = 5, Let L1=2mH:. L2=10mH

Let Vgs =-1.5V, : Id =Idss
$$(1 - \frac{Vgs2}{Vp}) = 3mA$$

$$g_{\rm m} = \frac{-2Idss}{Vp} (1 - \frac{Vgs}{Vp}) = 4mmhos$$

$$\therefore RS = \frac{Vs}{Id} = \frac{-Vgs}{Id} = \frac{1.5}{3m} = 500\Omega$$

Assume Av = 10 (>
$$\frac{L2}{L1}$$
) \Rightarrow 10 = $g_m.Rd$

$$\therefore Rd = \frac{10}{4m} = 2.5K\Omega$$

Assume Rg =1M Ω , Cc1=Cc2=0.1 μ f,Cs=47 μ f,

Assuming Vds=5V

$$\therefore$$
 Vdd = IdRd+Vds+Vs=14V

Experiment No:	DATE: //
----------------	-----------------

HARTLEY AND COLPITTS OSCILLATOR

AIM: To design and test for the performance of FET – Hartley & Colpitt's Oscillators.

APPARATUS REQUIRED:-

Transistor – BFW10, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram (both oscillators).
- 2. Switch on the power supply and observe the output on the CRO (sine wave).
- 3. Note down the practical frequency and compare with its theoretical frequency.

COLPITTS OSCILLATOR:-

DESIGN:-

$$f = \frac{1}{2\Pi\sqrt{LC}}$$
, where $C\frac{C1C21}{C1+C2}$

Assume
$$\frac{C1}{C2}$$
 = 5, Let C1=500pF :: C2=100pF

$$\therefore$$
 L =0.12H, for f=50KHz

Let Vgs =-1.5V,
$$\therefore$$
 Id=Id =Idss1- $\frac{Vgs2}{Vp}$) = 3mA

$$g_{\rm m} = \frac{-2Idss}{Vp} = \frac{-Vgs}{Vp} = 4mmhos$$

$$\therefore Rs = \frac{Vs}{Id} = \frac{-Vgs}{Id} = \frac{1.5}{3m} = 500\Omega$$

Assume Av = 10 (>
$$\frac{C1}{C2}$$
) \Rightarrow 10 = $g_m.Rd$

$$\therefore Rd = \frac{10}{4m} = 2.5K\Omega$$

Assume Rg =1M Ω , Cc1=Cc2=0.1 μ f,Cs=47 μ f, assuming Vds=5V

$$\therefore$$
 Vdd = IdRd+Vds+Vs=14V

DESIGN:-

$$f = 1 \text{ MHZ} = \frac{1}{2\Pi\sqrt{LC}}$$

Assume L=.33H, ∴ C=0.0767pF

Let Vce = 6V, Ic = 2mA,

Choose Vcc –2 Vce

Assume Ve =
$$\frac{Vcc}{10}$$
 = 1.2V

$$\therefore Re = \frac{Ve}{Ie} \approx \frac{Ve}{Ic} = 1.2V$$

$$\therefore Re = \frac{Ve}{Ie} \approx \frac{Ve}{Ic} = \frac{1.2}{2m} = 600\Omega$$

$$\therefore$$
 R1 =34K Ω

$$Rc = \frac{\text{Vcc - Cce - Vre}}{Ic1} = \frac{12 - 6 - 1.2}{2m} = 2.4K\Omega$$

Assume Cc1=Cc2=0.1 μ f, Ce = 47 μ f,

Result:-

Parameter	Theoretical		Practical	
Frequency	Hartley	Colpitt	Hartley	Colpitt

Circuit Diagram:-

Series Clippers

a) To pass -ve peak above Vr level :-

b) To pass -ve peak above some level (say -3v) :-

Experiment No: DATE://_	
-------------------------	--

CLIPPING CIRCUITS

AIM: To design a Clipping circuit for the given specifications and hence to plot its O/P

APPARATUS REQUIRED:-

Diode-IN 4007, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connections are made as shown in the circuit diagram.
- 2. A sine wave Input Vi whose amplitude is greater than the clipping level is applied.
- 3. Output waveform Vo is observed on the CRO.
- 4. Clipped voltage is measured and verified with the designed values.

c) To pass +ve peak above Vr level :-

d) To pass +ve peak above some level (say +3v) :-

Design:-

Choose Rf =
$$10\Omega$$
, Rr = $1M\Omega$

$$\therefore R = \sqrt{RfRr} = 3.3K\Omega$$

- a) To pass –ve peak above Vr level
- b) To pass –ve peak above some level (say 3v)

ie.,
$$-(VR+Vr) = -3$$

 $VR = 3-Vr$
 $3 - 0.6 = 2.4v$

- c) To pass +ve peak above Vr level
- d) To pass +ve peak above some level (say +3v)

ie.,
$$(VR+Vr) = +3$$

 $VR = 3-0.6 = 2.4v$

e) To pass +ve peak above some level (say +4v) and -ve peak above some level (say -3v)

ie.,
$$VR+Vr = 4$$

 $VR = 3.4v$
 $-(VR+Vr) = -3v$
 $VR = 2.4v$

- f) To remove +ve peak above Vr level
- g) To remove +ve peak above some level (say 3v)

ie.,
$$(VR+Vr) = 3v$$

 $VR = 2.4v$

h) To pass –ve peak above some level (say -2v)

ie.,
$$-VR+Vr = -2$$

 $VR = 2.6v$

e) To pass +ve peak above some level (say +4v) &

-ve peak above some level (say -3v) :-

Shunt Clippers

f) To remove +ve peak above Vr level :-

- i) To remove –ve peak above Vr level
- j) To pass +ve peak above some level (say 2v)

ie.,
$$VR-Vr = 2$$

 $VR = 2.6v$

k) To remove –ve peak above some level (say -3v)

ie.,
$$-(VR+Vr) = -3$$

 $VR = 2.4v$

1) To remove +ve peak above some level (say +3v) and -ve peak above some level (say -3v)

ie.,
$$(VR1+Vr) = 3v$$

 $VR1 = 2.4v$
 $-(VR2+Vr) = -3v$
 $VR2 = 2.4v$

m) To pass a part of the +ve half cycle (say V1 = 2v, V2 = 4.2v)

ie.,
$$(VR1 - Vr) = 2v$$

 $VR1 = 2.6v$
 $(VR2+Vr) = 4.2v$
 $VR2 = 3.6v$

g) To remove +ve peak above some level (say +3v) :-

h) To pass -ve peak above some level (say -2v) :-

i) To remove above Vr level :-

j) To pass +ve peak above some level (say +2v) :-

k) To remove –ve peak above some level (say -3v) :-

<u>l)</u> To remove above some level (say +3v) and

-ve peak above some level (say -3v) :-

m) To pass a part of the =ve half cycle (say V1 = 2v, V2 = 4.2v) :-

Circuit Diagram:-

a) Positive peak clamped at Vr level:-

b) Positive peak clamped at +ve Reference :-

Experiment No: DATE://_	
-------------------------	--

CLAMPING CIRCUITS

AIM:
- To design a Clamping circuit for the given specifications and hence to plot its output.

APPARATUS REQUIRED:-

Diode-IN 4007, capacitors, resistors, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connections are made as shown in the circuit diagram.
- 2. A square wave input Vi is applied
- 3. Output waveform Vo is observed on the CRO. Keeping the AC/DC switch of the CRO in DC Position.
- 4. Clamped voltage is measured and verified with the designed values.

c) Positive peak clamped at -ve reference level :-

d) Negative peak clamped to Vr level:-

DESIGN:-

$$R_LC >> T => Assume T = 2 ms$$
, let $R_LC = 50T = 100ms$

Let
$$R_L = 100 K\Omega$$

$$\therefore$$
 C = 1 μ f

- a) Positive peak clamped to Vr level
- b) Positive clamped to +ve reference level (say +2v)

ie.,
$$VR + Vr = 2 \Rightarrow VR = 2 - Vr = 2 - 0.6 = 1.4v$$

c) Positive peak clamped to –ve reference level (say -2v)

ie.,
$$-VR + Vr = -2 => VR = 2.6v$$

- d) Negative peak clamped to Vr level
- e) Negative peak clamped to +ve reference level (say +2v)

ie.,
$$VR - Vr = 2 \Rightarrow VR = 2.6v$$

f) Negative peak clamped to –ve reference level (say -2v)

ie.,
$$(VR+Vr) = -2 => VR = 1.6v$$

e) Negative peak clamped at +ve reference level :-

f) Negative peak clamped at -ve reference level :-

RESULT :-	<u>:</u>	
Circuit	Clamping level (Designed)	Clamping level (Observed)
a)		
b)		
c)		
d)		
e)		
f)		

Circuit Diagram:-

INVERTING AMPLIFIER:-

NONINVERTING AMPLIFIER:-

VOLTAGE FOLLOWER:-

Experiment No:

DATE: __/__/___

LINEAR APPLICATIONS OF OP-AMP

To design and test Operational amplifier applications: (1)Inverting

AIM: Amplifier, (2) Non-Inverting Amplifier, (3) Summer, (4) Voltage Follower,

(5) Integrator and Differentiator.

APPARATUS REQUIRED:-

 $Op-Amp-\mu A$ 741, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Give the input signal as specified
- 3. Switch on the dual power supply.
- 4. Note down the outputs from the CRO.
- 5. Draw the necessary waveforms on the graph sheet.
- 6. Repeat the procedure for all circuits.

DESIGN:-

a) Inverting Amplifier: Let $Av = 10 = \frac{-Rf}{Ri}$

Assume $Ri = 1k\Omega$:. $Rf = 10 K\Omega$, $Ri = 10K\Omega$

b) Non Inverting Amplifier Let Av = $11 = 1 + \frac{Rf}{Ri}$

Assume Ri = $1k\Omega$:. Rf = $(11-1) \times Ri = 10k\Omega$

c) Voltage follower Av =unity.

SUMMER:-

DIFFERENTIATOR:-

INTEGRATOR:-

DESIGN:-

a) Integrator

Let T=1msec and RC = 100 T = 100 msec

Assume $R = 100 \text{ K}\Omega : C = 1\mu\mu$

Assume Rf = $10 \text{ K}\Omega$

b) Differentiator:-

Let T =1msec and Rc =0.01 μf

Assume $R = 1K\Omega$

c) Summer:-

Let Y=2V1+V2+3V3=
$$\frac{Rf}{R1}V1 + \frac{Rf}{R2}V2 + \frac{Rf}{R3}V3$$

i.e,
$$\therefore \frac{Rf}{R1} = 2, \frac{Rf}{R2} = 1$$
 and $\frac{Rf}{R3}V3$

Assume Fr = $10k\Omega$ \therefore R1=5K Ω , R2= $10k\Omega$ and R3= $3.33k\Omega$

Assume $R = 10k\Omega$

Circuit Diagram:-

Schmitt trigger with zero-reference

Schmitt trigger with positive reference

Comparator: Zero Crossing Detector

$$V_0 = +V_{\text{sat}}$$
, when $V_i < 0$
 $V_0 = -V_{\text{sat}}$, when $V_i > 0$

Experiment No:	DATE: / /
Experiment No:	DATE://

SCHMITT TRIGGER

To design and test USING Operational amplifiers for the performance of:

AIM: (1)Zero Crossing Detector, (2) Schmitt Trigger for different hysterisis values.

APPARATUS REQUIRED:-

Op-Amp – μA 741, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. For a zero crossing detector, connect the non-inverting terminal to ground.
- 3. Switch on the dual power supply.
- 4. Observe the output waveform on the CRO
- 5. Draw the output and input waveforms.
- 6. For Schmitt Trigger set input signal (say 1V, 1 KHz) using signal generator.
- 7. Observe the input and output waveforms on the CRO.
- 8. Plot the graphs: V_i vs Time, V_O vs Time.

Design

Given,
$$V_R = 0$$
 and $\pm V_{\text{sat}} = \pm 12 \text{ V}$.
Assume, $V_{b1} = V_{b2}$

WAVE FORMS:-

DESIGN:-

Let UTP =
$$6V = \Rightarrow \frac{VRRI}{R1 + R2} + \frac{VsatR2}{R1 + R2}$$

$$LTP = -2V = \Rightarrow \frac{VRRI}{R1 + R2} + \frac{VsatR2}{R1 + R2}$$

Assume $V_{sat} = 12V$

UTP + LTP =
$$4 = \frac{2VRRI}{R1 + R2} \Rightarrow VR = \frac{2(R1 + R2)}{R1} = 2(1 + \frac{R2}{R1})$$

UTP - LTP =8 =
$$\frac{2VsatR2}{R1 + R2}$$
 \Rightarrow $VR = \frac{R1}{R2} = 2$

$$\therefore$$
 VR = 3V, Assume R2 = 1 K $\Omega \Rightarrow$ R1 = 2 K Ω

$$III^{Iy}$$
 design for UTP = +4, +8, +2 and -2.

$$LTP = -4, +2, -4 \text{ and } = 4$$

RESULT: -UTP and LTP is measured and compared with the designed value.

FULL WAVE PRECISION RECTIFIER:-

DESIGN:-

(i) Given
$$A = \frac{5}{0.5} = 10 = \frac{Rf}{Ri}$$

Assume $Ri = 1k\Omega$, $\therefore Rf = 10K\Omega$

Choose $R = 10K\Omega$

 $Rf' = Rf = 10K\Omega$

(ii) Given A1 =
$$\frac{5}{0.5}$$
 = 10 = $\frac{Rf}{Ri}$ and A2 = $\frac{3}{0.5}$ = 6 = 3 $\frac{Rf}{Ri}$ $\left(\frac{Rf'}{2R + Rf'}\right)$

Assume $Ri = 1K\Omega$

 $Rf = 10K\Omega$ and $Rf' = 5K\Omega$

Experiment No:	DATE: //
-----------------------	-----------------

FULL WAVE PRECISION RECTIFIER

AIM:
- To test for the performance of Full wave Precision Rectifier using Operational Amplifier.

APPARATUS REQUIRED:-

Op-Amp – μ A 741, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Give a sinusoidal input of VPP, 1 KHz from a signal generator.
- 3. Switch on the power supply and note down the output from CRO.
- 4. Without Connecting Rf 2, the wave form of the half wave rectifier is produced.
- 5. At some value of Rf 2 the wave form of a full wave rectifier is obtained.
- 6. Repeat the above procedure by reversing the diodes.

RESULT:-

The operation of the precision rectifier is studied using μA 741.

CIRCUIT DIAGRAM: - (HIGH VOLTAGE)

DESIGN:-

Given
$$V_0 = 12v$$

$$V_{\rm o} = 7.15 \left[1 + \frac{R_1}{R_2} \right]$$

$$12 = 7.15 \left[1 + \frac{R_1}{R_2} \right]$$

Assume $R_1 = 10K\Omega$

 $\therefore R_2 = 17.7 K\Omega [use 15 K\Omega]$

Assume $R_L = 720\Omega$ & C = 100pf

CHARACTERISTIC CURVE: -

OBSERVATION:-

Vi (volts)	Vo (volts)

Experiment No:	DATE: / /
Experiment No:	DATE://

VOLTAGE REGULATOR USING IC 723

AIM: - To design and test the IC 723 voltage regulator.

APPARATUS REQUIRED:-

IC 723, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Switch on the power supply and note down the output from CRO.
- 3. Vary the input voltage from 7V, note down corresponding output voltage.
- 4. Draw the regulation charectistics.

CIRCUIT DIAGRAM: - (LOW VOLTAGE)

DESIGN:-

For LM723 $V_{ref} = 7.15V$

$$V_{O} = 7.15 \left[\frac{R_2}{R_1 + 2} \right]$$

Let the devider current ${\bf I}_0$ through the resistor ${\bf R}_1$ & ${\bf R}_2$ is 1mA. Since error amplifier draws very little current, we will neglect its input bias current.

Hence
$$R_1 = \frac{V_{ref} - V_O}{I_D} = \frac{7.15 - 6}{1 \times 10^3} = 1.1 \text{K}\Omega$$

$$R_2 = \frac{V_O}{I_D} = \frac{6}{1 \times 10^3} = 6 \text{K}\Omega$$

$$R_3 = \frac{R_1 R_2}{R_1 + R_2} = \underline{\hspace{1cm}}$$

Assume $C_1 = 0.1 \mu F \& C_2 = 100 PF$

PROCEDURE:-

- 1. Connect the circuit as per the circuit diagram.
- 2. For line regulation vary the input voltage from 7V, note down the corresponding output voltage.
- 3. Draw the transfer characteristics.
- 4. For load regulation note down the output current.
- 5. Draw the transfer characteristics.

GRAPH:-

(i) Line Regulation

(ii) Load Regulation

OBSERVATION:-

(i) Line Regulation		(ii) Load Regulation		
Vi (volts)	Vo (volts)	Vi (volts)	Vo (volts)	

CIRCUIT DIAGRAM: -

$$V_0 = -R_f \left[\frac{b_3}{2R} + \frac{b_2}{4R} + \frac{b_1}{8R} + \frac{b_0}{16R} \right] \times V_{ref}$$

Note: -

- 1. b_3 , b_2 , b_1 and b_0 are binary input.
- 2. $V_{ref} = 5V$.
- 3. If b is the decimal value of the binary input b_3 , b_2 , b_1 , b_0 , then $\mathbf{V_0} = \frac{-\mathbf{V_{ref}}}{8} \times \mathbf{b}$
- 4. Vo is the analog output
- 5. Binary inputs can either take the value 0 or 1
- 6. Binary input b_i can be made 0 by connecting the input to the ground. It can be made 1 by connecting to +5V

Experiment No:	DATE: //
-----------------------	-----------------

VOLTAGE REGULATOR USING IC 723

AIM: - To design 4 bit R-2R ladder DAC using op-amp.

APPARATUS REQUIRED:-

IC 723, resistor, power supply, CRO, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. The IC is given proper bias of '+12V' and '-12V' to 'Vcc' and 'Vee' respectively.
- 3. According to the binary values of b_3 , b_2 , b_1 and b_0 , b_3 , b_2 , b_1 and b_0 are connected to '+5V' or 'Ground' respectively.
- 4. The o/p voltage is tabulated for different binary inputs and is compared with the theoretical values.

Tabular Column:-

In	put	S		Output (volts)		
b ₃ b ₂ , b ₁ b ₀			$\mathbf{b_0}$	Practical	Theoretical	
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

Experiment No:

DATE: __/__/___

ANALOG TO DIGITAL CONVERTOR

AIM: - To rig up circuit to convert an analog voltage to its digital equivalent

APPARATUS REQUIRED:-

IC LM 324, IC 7400, resistor, power supply, multimeter, etc.

PROCEDURE: -

- 1. Connect the circuit as per the circuit diagram.
- 2. Verify the digital O/P for different analog voltages.

Note:- (1). Connect V+ (pin 4) terminal of the OPAMP to +5V

(2). Connect V- (pin 11) terminal of the OPAMP to ground

Design: Number of comparators required = 2n-1

Where n = desired number of bits

C1, C2 & C3 = Comparator o/p

D0 & D1 = Encoder (Coding network) O/P

PIN DIAGRAM:-

Tabular Column:-

Analog I/P Vin	C3	C2	C1	D 1	$\mathbf{D0}$
0 to v/4	0	0	0	0	0
V/4 to V/2	0	0	1	0	1
V/2 to 3V/4	0	1	1	1	0
3V/4 to V	1	1	1	1	1