ANALOG ELECTRONIC CIRCUITS LAB MANUAL

III SEMESTER B.E (E \& C)

(For private circulation only)

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF ELECTRONICS \& COMMUNICATION SRI SIDDHARTHA INSTITUTE OF TECHNOLOGY MARLUR, TUMKUR-572105

CONTENTS

Experiment No

Page. No

1. RC coupled amplifier 2
2. Darlington Emitter Follower

8
3. Voltage Series Feedback Amplifier 14
4. RC Phase shift Oscillator 22
5. Hartley \& Colpitt's Oscillator 26
6. Clipping circuits 30
7. Clamping circuits 40
8. Op-Amp applications 46
9. ZCD \& Schmitt trigger 50
10.Full wave Precision Rectifier 54
11. Voltage Regulator 56
12.Digital-Analog Converter 60
13.Analog-Digital Converter 64

Circuit Diagram :-

$$
\begin{aligned}
V_{S} & =50 \mathrm{mV} \\
\text { FreauencV } & =(0-1) \mathrm{N}
\end{aligned}
$$

Frequency $=(0-1) \mathrm{MHz}$

Design :-

Given: $V_{C C}=15 \mathrm{~V} ; I_{C}=1 \mathrm{~mA} ; A_{V}=50 ; f_{L}=500 \mathrm{~Hz}$; Stability factor $=[2-10]$.
Gain formula is given by,

$$
A_{V}=\frac{-h_{f e} R_{l, e f f}}{h_{i e}}
$$

Assume, $V_{C E}=\frac{V_{C C}}{2}$ (Activecondition); $V_{E}=\frac{V_{C C}}{10}$
Effective load resistance is given by $R_{\text {Leff }}=R_{C} \| R_{L}$.
Internal emitter resistance is given by $r_{e}=\frac{26 \mathrm{mV}}{I_{E}}$

$$
h_{i c}=\beta r_{e}
$$

where r_{e} is internal emitter resistance of the transistor.

$$
h_{i c}=h_{f e} r_{e}
$$

On applying KVL to output loop, we get
where

$$
\begin{aligned}
V_{C C} & =I_{C} R_{C}+V_{C: I}+I_{E} R_{l:} \\
V_{E} & =I_{E} R_{E} \\
R_{C} & =?
\end{aligned}
$$

Experiment No:

DATE: \qquad

RC COUPLED AMPLIFIER

AIM: -To design a RC coupled single stage FET/BJT amplifier and determination of the gain-frequency response, input and output impedances.

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Set $\mathrm{Vs}=50 \mathrm{mV}$ (assume) using the signal generator
3. Keeping the input voltage constant, vary the frequency from 0 Hz to 1 MHz in regular steps of 10 and note down corresponding output voltage.
4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
5. Find the input and output impedance.
6. Calculate the bandwidth from the graph.
7. Note down the phase angle, bandwidth, input and output impedance.

The emitter current is given by the equation $I_{E:}=I_{B}+I_{C}$.
Since I_{B} is very small when compared with I_{C},

$$
\begin{aligned}
& I_{C} \approx I_{E} \\
& R_{E:}=\frac{V_{I:}}{I_{I:}}=?
\end{aligned}
$$

The voltage at the base of the transistor is given by

$$
V_{B}=V_{B E}+V_{E}
$$

From voltage divider rule, the voltage at the base of the transistor is given by

$$
V_{B}=V_{C C} \frac{R_{B 2}}{R_{B 1}+R_{B 2}}
$$

The equation for stability factor is given by

$$
S=1+\frac{R_{B}}{R_{E}}
$$

Find R_{B}
$R_{B}=R_{B 1} \| R_{B 2}$
From equations (i) and (ii), solve for $\mathrm{R}_{\mathrm{B} 1}$, and $R_{B 2}$
Input coupling capacitor is given by,

$$
\begin{aligned}
X_{C i} & =\frac{\left(h_{i c} \| R_{B}\right)}{10} \\
X_{C_{i i}} & =\frac{1}{2 \pi f C_{i}} \\
C_{1} & =?
\end{aligned}
$$

Output coupling capacitor is given by

$$
\begin{aligned}
X_{C 0} & =\frac{R_{C} \cdot \| R_{l}}{10} \\
X_{C 0} & =\frac{1}{2 \pi f C_{0}} \\
C_{0} & =?
\end{aligned}
$$

By-pass capacitor is given by, $X_{C E}=\frac{R_{I}^{\prime}}{10}$
where,

$$
\begin{aligned}
R_{E}^{\prime} & =\left[R_{E} \| \frac{\left(R_{B}+h_{i e}\right)}{h_{f e}}\right] \\
X_{C I} & =\frac{1}{2 \pi f C_{E}} \\
C_{I:} & =?
\end{aligned}
$$

General Procedure for Calculation :-

1. Input impedance

a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
b. Connect ac voltmeter $(0-100 \mathrm{mV})$ across the biasing resistor R_{2}.
c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected ($\mathrm{V}_{\text {load }}$).
b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected ($\mathrm{V}_{\text {no-load }}$).
c. Substitute these values in the formula $Z_{O}=\frac{V_{\text {load }}-V_{\text {no-load }}}{V_{\text {load }}} \times 100 \%$

3. Bandwidth

a. Plot the frequency response
b. Identify the maximum gain region.
c. Drop a horizontal line bi -3 dB .
d. The -3 dB line intersects the frequency response plot at two points.
e. The lower intersecting point of -3 dB line with the frequency response plot gives the lower cut-off frequency.
f. The upper intersecting point of -3 dB line with the frequency response plot gives the upper cut-off frequency.
g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth $=f_{h}-f_{l}$.

Model Graph (Frequency Response) :-

TABULAR COLUMN : -

Sl No.	Frequency	V_{O} (volts)	Gain $=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$	Gain $(\mathrm{dB})=20 \log \mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$

Result :-

	Theoretical	Practical
Input impedance		
Output impedance		
Gain (Mid band)		
Bandwidth		

Circuit Diagram :-

DC Analysis :-

Experiment No:

DATE: \qquad 1_1

DARLINGTON EMITTER FOLLOWER

To design a BJT Darlington Emitter follower and determine the gain, input and AIM: output impedances.

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Set $\mathrm{V}_{\mathrm{i}}=1$ volt (say), using the signal generator
3. Keeping the input voltage constant, vary the frequency from 0 Hz to 1 MHz in regular steps of 10 and note down corresponding output voltage.
4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
5. Find the input and output impedance.
6. Calculate the bandwidth from the graph.
7. Note down the phase angle, bandwidth, input and output impedance.

Design :-

Given $\mathrm{V}_{\mathrm{CEQ}}=\mathrm{V}_{\mathrm{CE} 2}=6 \mathrm{v}$

$$
\mathrm{I}_{\mathrm{CQ}}=\mathrm{I}_{\mathrm{C} 2}=5 \mathrm{~mA}
$$

Assume β for SL100 $=100$

$$
\mathrm{V}_{\mathrm{CC}}=12 \mathrm{v}
$$

$\mathrm{V}_{\mathrm{E} 2}=\frac{\mathrm{V}_{\mathrm{CC}}}{2}=\frac{12}{2}=6 \mathrm{v}$
$\mathrm{I}_{\mathrm{E} 2} \mathrm{R}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E} 2}$
$\therefore \mathrm{R}_{\mathrm{E}}=\frac{\mathrm{V}_{\mathrm{E} 2}}{\mathrm{I}_{\mathrm{E} 2}}=\frac{6}{5 \times 10^{-3}}=1.2 \mathrm{k} \Omega \quad\left[\because \mathrm{IE}_{2}=\mathrm{IC}_{2}\right]$
$\therefore \mathrm{R}_{\mathrm{E}}=1.2 \mathrm{k} \Omega$
$\mathrm{VB}_{1}=\mathrm{VBE}_{1}+\mathrm{VBE}_{2}+\mathrm{VE}_{2}$
$\mathrm{VB}_{1}=0.7+0.7+6$
$V B_{1}=7.4 v$
$\mathrm{IB}_{2}=\frac{\mathrm{I}_{\mathrm{C} 2}}{\beta}=\frac{5 \times 10^{-3}}{100}=0.05 \mathrm{~mA}$
$\mathrm{IB}_{1}=\frac{\mathrm{I}_{\mathrm{C} 1}}{\beta}=\frac{\mathrm{I}_{\mathrm{B} 2}}{\beta}=\frac{0.05}{100}=0.0005 \mathrm{~mA}$
$\operatorname{10IB}_{1} \mathrm{R}_{1}=\mathrm{V}_{\mathrm{CC}}-\mathrm{VB}_{1}$
$\therefore \mathrm{R}_{1}=\frac{12-7.4}{10 \times 0.0005 \times 10^{-3}}=920 \mathrm{k} \Omega \quad\left[\right.$ Use $\left.\mathrm{R}_{1}=1 \mathrm{M} \Omega\right]$
$\mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{B1}}}{9 \mathrm{I}_{\mathrm{B}}}=1644 \mathrm{k} \Omega$
$\therefore \mathrm{R}_{2}=1.5 \mathrm{M} \Omega$

General Procedure for Calculation:

1. Input impedance

a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
b. Connect ac voltmeter $(0-100 \mathrm{mV})$ across the biasing resistor R_{2}.
c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected ($\mathrm{V}_{\text {load }}$).
b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected ($\mathrm{V}_{\text {no-load }}$).
c. Substitute these values in the formula $Z_{O}=\frac{V_{\text {load }}-V_{\text {no-load }}}{V_{\text {load }}} \times 100 \%$

3. Bandwidth

a. Plot the frequency response
b. Identify the maximum gain region.
c. Drop a horizontal line bi -3 dB .
d. The -3 dB line intersects the frequency response plot at two points.
e. The lower intersecting point of -3 dB line with the frequency response plot gives the lower cut-off frequency.
f. The upper intersecting point of -3 dB line with the frequency response plot gives the upper cut-off frequency.
g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth $=f_{h}-f_{l}$.

Model Graph: (Frequency Response)

TABULAR COLUMN: -

Sl No.	Frequency	V_{O} (volts)	Gain $=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$	Gain $(\mathrm{dB})=20 \log \mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$

4. To find Q-Point

a. Connect the circuit as per circuit diagram
b. Switch on the DC source [switch off the AC source]
c. Measure voltage at $\mathrm{V}_{\mathrm{B} 2}, \mathrm{~V}_{\mathrm{E} 2} \& \mathrm{~V}_{\mathrm{C} 2}$ with respect to ground

> \& also measure

$$
\mathrm{V}_{\mathrm{CE} 2}=\mathrm{V}_{\mathrm{C} 2}-\mathrm{V}_{\mathrm{E} 2}
$$

$$
\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{E} 2}=\frac{\mathrm{V}_{\mathrm{E} 2}}{\mathrm{R}_{\mathrm{E}}}
$$

$$
\mathrm{Q}-\text { Point }=\left[\mathrm{V}_{\mathrm{CE} 2}, \mathrm{I}_{\mathrm{C} 2}\right]
$$

Result

	Theoretical	Practical
Input impedance		
Output impedance		
Gain (Mid band)		
Bandwidth		

Circuit Diagram :-

Amplifier without Feedback

Amplifier with Feedback

Experiment No:

DATE: \qquad

VOLTAGE SERIES FEEDBACK AMPLIFIER

To design a FET/BJT Voltage series feedback amplifier and determine the
AIM: - gain, frequency response, input and output impedances with and without feedback

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Set $\mathrm{Vs}=50 \mathrm{mV}$ (assume) using the signal generator
3. Keeping the input voltage constant, vary the frequency from 0 Hz to 1 MHz in regular steps of 10 and note down corresponding output voltage.
4. Plot the frequency response: Gain (dB) vs Frequency (Hz).
5. Find the input and output impedance.
6. Calculate the bandwidth from the graph.
7. Note down the phase angle, bandwidth, input and output impedance.

Design (With Feedback):-

Given $\mathrm{A}_{\mathrm{V} 1}=30 ; \mathrm{A}_{12}=20 ; \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{E} 2}=1.8 \mathrm{~mA} ; \mathrm{I}_{\mathrm{E} 1}=1.1 \mathrm{~mA} ; \mathrm{S}=3 ; \mathrm{h}_{\mathrm{fe} 1}$ and $\mathrm{h}_{\mathrm{fe} 2}$ are obtained by multimeter $\beta=0.03$

DC Analysis of II Stage: -

$$
\mathrm{V}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{C} 2} \mathrm{R}_{\mathrm{C} 2}+\mathrm{V}_{\mathrm{CE} 2}+\mathrm{I}_{\mathrm{E} 2} \mathrm{R}_{\mathrm{E} 2}
$$

$$
R_{B 1}=(S-1) R_{E 1}=?
$$

$$
R_{B 1}=R_{1} \| R_{2}
$$

$$
\text { find } R_{1} \text { and } R_{2}
$$

Input impedance is given by

$$
Z_{i 1}=R_{B 1} \|\left[h_{i e 1}+\left(1+h_{f e 1}\right) R_{f 1}\right]
$$

Output impedance is given by

$$
Z_{o 1}=R_{C 1}
$$

The feedback factor β is given by

$$
\beta=\frac{R_{f 1}}{R_{f 1}+R_{f 2}}
$$

where, $R_{f 2} \gg R_{f 1}$
assume $R_{f 2}=10 \mathrm{k} \Omega$; find $R_{f 1}$
overall voltage gain is given by

$$
A_{V}=A_{V 1} \times A_{V 2}
$$

Parameter Analysis with Feedback

The desensitive factor, $D=1+\beta A_{V}$
Output impedance with feedback is given by

$$
Z_{o f}=\frac{Z_{o 2}}{D}
$$

Input impedance with feedback is given by

$$
Z_{i f}=Z_{i 1} \times D
$$

The gain with feedback is given by

$$
A_{V f}=\frac{A_{V}}{D}
$$

The output capacitor is given by

$$
\begin{aligned}
& X_{C 0}=\frac{Z_{o 2}}{10} \\
& \text { where } X_{C 0}=\frac{1}{2 \pi f C_{0}} \\
& C_{0}=?
\end{aligned}
$$

The input capacitor is given by,

$$
\begin{aligned}
& X_{C i}=\frac{Z_{i 1}}{10} \\
& \text { where } X_{C i}=\frac{1}{2 \pi f_{C i}} \\
& C_{i}=?
\end{aligned}
$$

for active condition, $V_{C I 22}=\frac{V_{C C}}{2}$
The voltage gain is given by

$$
\begin{aligned}
& A_{V 2}=\frac{-h_{f e 2} R_{C 2}}{h_{i c 2}} \\
& R_{C 2}=? \\
& R_{E 2}=\frac{V_{C C}-V_{C E 2}-I_{C 2} R_{C 2}}{I_{E 2}}=? \\
& V_{B 2}=V_{B E}+V_{E 2}=\frac{V_{C C}}{R_{3}+R_{4}} \times R_{4} \\
& S=1+\frac{R_{B 2}}{R_{E 2}} \\
& R_{B 2}=(S-1) R_{E 22}=? \\
& R_{B 2}=R_{3} \| R_{4}
\end{aligned}
$$

on solving (i) and (ii)
Find R_{3} and R_{4}.
Input impedance is given by,

$$
Z_{i 2}=\left(R_{B 2} \| h_{i c 2}\right)
$$

Output impedance is given by,

$$
Z_{o 2}=R_{C 2}
$$

DC Analysis of I Stage

The voltage gain is given by
$A_{V 1}=\frac{-h_{f e 1}\left(R_{C 1} \| Z_{i C}\right)}{h_{i e 1}}$
$\left(R_{C 1} \| Z_{i 2}\right)=$?
Find $R_{C 1}=$?

Apply KVL to first stage,

$$
\begin{aligned}
& V_{C C}=I_{C 1} R_{C 1}+V_{C E 1}+I_{E 1} R_{E 1} \\
& \text { for active condition, } V_{C E 1}=\frac{V_{C C}}{2} \\
& V_{E 1}=\frac{V_{C C}-V_{C E 1}-I_{C 1} R_{C 1}}{I_{E 1}}=? \\
& V_{B 1}=V_{B E}+V_{E 1}=\frac{V_{C C}}{R_{1}+R_{2}} \times R_{2} \\
& S=1+\frac{R_{B 1}}{R_{E 1}}
\end{aligned}
$$

The emitter capacitor of first stage is given by

$$
X_{C E}=\frac{R_{E 1}^{\prime}}{10} \text { where } R_{E 1}^{\prime}=R_{E} \|\left\{R_{f 1}+\left(\frac{R_{B 1}+h_{i c 2}}{1+h_{f c 2}}\right)\right\}
$$

The emitter capacitor of II stage is given by

$$
\begin{gathered}
X_{C E 2}=\frac{R_{E 2}^{\prime}}{10} \\
\text { where } R_{E 2}^{\prime}=R_{E 2} \|\left(\frac{h_{i c 2}+R_{B 2}}{1+h_{f c 2}}\right)
\end{gathered}
$$

Model Graph (Frequency Response) :-

General Procedure for Calculation:

1. Input impedance

a. Connect a Decade Resistance Box (DRB) between input voltage source and the base of the transistor (series connection).
b. Connect ac voltmeter $(0-100 \mathrm{mV})$ across the biasing resistor R_{2}.
c. Vary the value of DRB such that the ac voltmeter reads the voltage half of the input signal.
d. Note down the resistance of the DRB, which is the input impedance.

2. Output impedance

a. Measure the output voltage when the amplifier is operating in the mid-band frequency with load resistance connected ($\mathrm{V}_{\text {load }}$).
b. Measure the output voltage when the amplifier is operating in the mid-band frequency without load resistance connected ($\mathrm{V}_{\text {no-load }}$).
c. Substitute these values in the formula $Z_{O}=\frac{V_{\text {load }}-V_{\text {no-load }}}{V_{\text {load }}} \times 100 \%$

3. Bandwidth

a. Plot the frequency response
b. Identify the maximum gain region.
c. Drop a horizontal line bi -3 dB .
d. The -3 dB line intersects the frequency response plot at two points.
e. The lower intersecting point of -3 dB line with the frequency response plot gives the lower cut-off frequency.
f. The upper intersecting point of -3 dB line with the frequency response plot gives the upper cut-off frequency.
g. The difference between upper cut-off frequency and lower cut-off frequency is called Bandwidth. Thus Bandwidth $=f_{h}-f_{l}$.

TABULAR COLUMN: -

With Feedback ($\mathbf{V}_{\mathbf{i}}=\mathbf{5 0} \mathbf{m V}$)

Sl No.	Frequency	V_{O} (volts)	Gain $=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$	Gain $(\mathrm{dB})=20 \log \mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$

Without Feedback ($\mathbf{V}_{\mathbf{i}}=\mathbf{5 0} \mathbf{m V}$)

Sl No.	Frequency	V_{O} (volts)	Gain $=\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$	Gain $(\mathrm{dB})=20 \log \mathrm{~V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{i}}$

Result

	Theoretical		Practical	
	With f/b	Without f/b	With f/b	Without f/b
Input impedance				
Output impedance				
Gain (Mid band)				
Bandwidth				

Circuit Diagram :-

Design

Given $f_{0}=1 \mathrm{kHz} ; C=0.01 \mu \mathrm{~F}, V_{C C}=12 \mathrm{~V}$

$$
f=\frac{1}{2 \pi \sqrt{6} R C}
$$

Find R

$$
\begin{aligned}
\beta(s) & =-\frac{1}{29} \\
A & =\frac{1}{\beta}=-29
\end{aligned}
$$

Amplifier Design

Gain formula is given by,

$$
A_{V}=\frac{-h_{f e} R_{L e f f}}{h_{i e}}\left(A_{V}=29, \text { design given }\right)
$$

Assume $V_{C E}=V_{C C} / 2$ (transistor Active)
Effective load resistance is given by, $R_{\text {Leff }}=R_{C} \| R_{L}$
Emitter resistance is given by, $R_{E}=26 \mathrm{~m} \mathrm{~V} / I_{E}$

$$
h_{i e}=\beta r_{e}
$$

Where r_{e} is internal resistance of the transistor.

$$
\begin{aligned}
& h_{i e}=h_{f e} r_{e} \\
& V_{E}=V_{C C} / 10
\end{aligned}
$$

Experiment No:

DATE: \qquad

RC PHASE SHIFT OSCILLATOR

AIM: To design And test for the performance of RC Phase Shift Oscillator for the - given operating frequency f_{0}.

APPARATUS REQUIRED:-

Transistor - BC 107, capacitors, resistor, power supply, CRO, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram (both oscillators).
2. Switch on the power supply and observe the output on the CRO (sine wave).
3. Note down the practical frequency and compare with its theoretical frequency.
on applying KVL to output loop, we get

$$
V_{C C}=I_{C} R_{C}+V_{C E}+I_{E} R_{l E}
$$

where $V_{E}=I_{E} R_{E}$
Find R_{C}
Since I_{B} is very small when compare with I_{C},

$$
\begin{aligned}
& I_{C} \approx I_{E} \\
& R_{E}=V_{E} / I_{E} \\
& V_{B}=V_{B E}+V_{E} \\
& V_{B}=V_{C C} \frac{R_{B 2}}{R_{B 1}+R_{B 2}} \\
& S=1+\frac{R_{B}}{R_{E}}
\end{aligned}
$$

Find R_{B}

$$
R_{B}=R_{B 1} \| R_{B 2}
$$

Find $R_{B 1}$ and $R_{B 2}$
Coupling and by-pass capacitors can be found out by,
Input coupling capacitor is given by, $X_{(i i}=\left\{\left[h_{i c}+\left(1+h_{f c}\right) R_{E}\right] \| R_{B}\right\} / 10$

$$
X_{C i}=\frac{1}{2 \pi f C_{i}}
$$

Find C_{i}

$$
X_{C 0}=\frac{1}{2 \pi f C_{0}}
$$

Find C_{0}
By-pass capacitor is given by, $X_{C E}=R_{E} / 10$

$$
X_{E}=\frac{1}{2 \pi f C_{E}}
$$

Find C_{1} :

Result

	Theoretical	Practical
Frequency		

HARTLEY OSCILLATOR:-

DESIGN:-

$\mathrm{f}=\frac{1}{2 \Pi \sqrt{L C}}$, where $\mathrm{L}=\mathrm{L} 1+\mathrm{L} 2$
Assume $\frac{L 2}{L 1}=5$, Let L1 $=2 \mathrm{mH} \therefore \mathrm{L} 2=10 \mathrm{mH}$
Let $V g s=-1.5 \mathrm{~V}, \therefore \mathrm{Id}=\operatorname{Idss}\left(1-\frac{V g s 2}{V p}\right)=3 m A$
$\mathrm{g}_{\mathrm{m}}=\frac{-2 I d s s}{V p}\left(1-\frac{V g s}{V p}\right)=4 m m h o s$
$\therefore \mathrm{RS}=\frac{V s}{I d}=\frac{-V g s}{I d}=\frac{1.5}{3 m}=500 \Omega$
Assume Av $=10\left(>\frac{L 2}{\mathrm{~L} 1}\right) \Rightarrow 10=g_{m \cdot R d}$
$\therefore \mathrm{Rd}=\frac{10}{4 \mathrm{~m}}=2.5 \mathrm{~K} \Omega$
Assume $\operatorname{Rg}=1 \mathrm{M} \Omega, \mathrm{Cc} 1=\mathrm{Cc} 2=0.1 \mu \mathrm{f}, \mathrm{Cs}=47 \mu \mathrm{f}$,
Assuming Vds=5V
$\therefore \mathrm{Vdd}=\mathrm{IdRd}+\mathrm{Vds}+\mathrm{Vs}=14 \mathrm{~V}$

Experiment No:

DATE: \qquad 1_1

HARTLEY AND COLPITTS OSCILLATOR

AIM:
To design and test for the performance of FET - Hartley \& Colpitt's - Oscillators.

APPARATUS REQUIRED:-

Transistor - BFW10, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram (both oscillators).
2. Switch on the power supply and observe the output on the CRO (sine wave).
3. Note down the practical frequency and compare with its theoretical frequency.

COLPITTS OSCILLATOR:-

DESIGN:-

$\mathrm{f}=\frac{1}{2 \Pi \sqrt{L C}}$, where $C \frac{C 1 C 21}{C 1+C 2}$
Assume $\frac{C 1}{C 2}=5$, Let $C 1=500 \mathrm{pF} \therefore \mathrm{C} 2=100 \mathrm{pF}$
$\therefore \mathrm{L}=0.12 \mathrm{H}$, for $\mathrm{f}=50 \mathrm{KHz}$
Let $\left.\mathrm{Vgs}=-1.5 \mathrm{~V}, \therefore \mathrm{Id}=\mathrm{Id}=\mathrm{Idss} 1-\frac{V g s 2}{V p}\right)=3 m A$
$\mathrm{g}_{\mathrm{m}}=\frac{-2 I d s s}{V p}=\frac{-V g s}{V p}=4 m m h o s$
$\therefore \mathrm{Rs}=\frac{V s}{I d}=\frac{-V g s}{I d}=\frac{1.5}{3 m}=500 \Omega$
Assume $\mathrm{Av}=10\left(>\frac{C 1}{\mathrm{C} 2}\right) \Rightarrow 10=g_{m \cdot R d}$
$\therefore \mathrm{Rd}=\frac{10}{4 \mathrm{~m}}=2.5 \mathrm{~K} \Omega$
Assume $\operatorname{Rg}=1 \mathrm{M} \Omega, \mathrm{Cc} 1=\mathrm{Cc} 2=0.1 \mu \mathrm{f}, \mathrm{Cs}=47 \mu \mathrm{f}$,
assuming $\mathrm{Vds}=5 \mathrm{~V}$
$\therefore \mathrm{Vdd}=\mathrm{IdRd}+\mathrm{Vds}+\mathrm{Vs}=14 \mathrm{~V}$

DESIGN:-

$$
\mathrm{f}=1 \mathrm{MHZ}=\frac{1}{2 \Pi \sqrt{L C}}
$$

Assume $\mathrm{L}=33 \mathrm{H}, \therefore \mathrm{C}=0.0767 \mathrm{pF}$
Let Vce $=6 \mathrm{~V}, \mathrm{Ic}=2 \mathrm{~mA}$,
Choose Vcc-2 Vce
Assume $\mathrm{Ve}=\frac{V c c}{10}=1.2 \mathrm{~V}$
$\therefore \mathrm{Re}=\frac{\mathrm{Ve}}{\mathrm{Ie}} \approx \frac{\mathrm{Ve}}{\mathrm{Ic}}=1.2 \mathrm{~V}$
$\therefore \mathrm{Re}=\frac{\mathrm{Ve}}{\mathrm{Ie}} \approx \frac{\mathrm{Ve}}{\mathrm{Ic}}=\frac{1.2}{2 \mathrm{~m}}=600 \Omega$
$\therefore \mathrm{R} 1=34 \mathrm{~K} \Omega$
$R c=\frac{\text { Vcc }- \text { Cce }- \text { Vre }}{I c 1}=\frac{12-6-1.2}{2 m}=2.4 K \Omega$
Assume $\mathrm{Cc} 1=\mathrm{Cc} 2=0.1 \mu \mathrm{f}, \mathrm{Ce}=47 \mu \mathrm{f}$,

Result:-

Parameter	Theoretical			Practical	
Frequency	Hartley	Colpitt	Hartley	Colpitt	

Circuit Diagram:-

Series Clippers

a) To pass -ve peak above Vr level :-

b) To pass -ve peak above some level (say $-3 v$) :-

Experiment No:

DATE: \qquad

CLIPPING CIRCUITS

AIM:
To design a Clipping circuit for the given specifications and hence to plot its - $\quad \mathrm{O} / \mathrm{P}$

APPARATUS REQUIRED:-

Diode-IN 4007, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connections are made as shown in the circuit diagram.
2. A sine wave Input Vi whose amplitude is greater than the clipping level is applied.
3. Output waveform Vo is observed on the CRO.
4. Clipped voltage is measured and verified with the designed values.
c) To pass + ve peak above Vr level :-

d) To pass + ve peak above some level (say $+3 v$):-

Design :-

Choose $\mathrm{Rf}=10 \Omega, \mathrm{Rr}=1 \mathrm{M} \Omega$
$\therefore \mathrm{R}=\sqrt{\mathrm{RfRr}}=3.3 \mathrm{~K} \Omega$
a) To pass -ve peak above Vr level
b) To pass -ve peak above some level (say - 3v)
ie., $\quad-(V R+V r)=-3$
$\mathrm{VR}=3-\mathrm{Vr}$

$$
3-0.6=2.4 v
$$

c) To pass +ve peak above Vr level
d) To pass + ve peak above some level (say $+3 v$)

$$
\begin{aligned}
\text { ie., } & (\mathrm{VR}+\mathrm{Vr})=+3 \\
& \mathrm{VR}=3-0.6=2.4 \mathrm{v}
\end{aligned}
$$

e) To pass +ve peak above some level (say +4 v) and -ve peak above some level (say -3v)

$$
\text { ie., } \begin{array}{ll}
\mathrm{VR}+\mathrm{Vr}=4 \\
& \mathrm{VR}=3.4 \mathrm{v} \\
& -(\mathrm{VR}+\mathrm{Vr})=-3 \mathrm{v} \\
& \mathrm{VR}=2.4 \mathrm{v}
\end{array}
$$

f) To remove + ve peak above Vr level
g) To remove + ve peak above some level (say 3 v)

$$
\begin{array}{ll}
\text { ie., } & (\mathrm{VR}+\mathrm{Vr})=3 \mathrm{v} \\
& \mathrm{VR}=2.4 \mathrm{v}
\end{array}
$$

h) To pass -ve peak above some level (say -2 v)

$$
\begin{aligned}
\text { ie., } & -\mathrm{VR}+\mathrm{Vr}=-2 \\
& \mathrm{VR}=2.6 \mathrm{v}
\end{aligned}
$$

e) To pass +ve peak above some level $($ say $+4 v) \&$
-ve peak above some level (say -3v) :-

Shunt Clippers

f) To remove + ve peak above Vr level :-

i) To remove -ve peak above Vr level
j) To pass +ve peak above some level (say 2 v)

$$
\begin{array}{ll}
\text { ie., } & V R-V r=2 \\
& V R=2.6 v
\end{array}
$$

k) To remove -ve peak above some level (say -3v)

$$
\begin{array}{ll}
\text { ie., } & -(\mathrm{VR}+\mathrm{Vr})=-3 \\
& \mathrm{VR}=2.4 \mathrm{v}
\end{array}
$$

1) To remove +ve peak above some level (say +3 v) and -ve peak above some level (say -3v)
ie., $\quad(\mathrm{VR} 1+\mathrm{Vr})=3 \mathrm{v}$
$\mathrm{VR} 1=2.4 \mathrm{v}$
$-(\mathrm{VR} 2+\mathrm{Vr})=-3 \mathrm{~V}$
$\mathrm{VR} 2=2.4 \mathrm{v}$
m) To pass a part of the + ve half cycle (say $\mathrm{V} 1=2 \mathrm{v}, \mathrm{V} 2=4.2 \mathrm{v}$)
ie., $\quad(\mathrm{VR} 1-\mathrm{Vr})=2 \mathrm{v}$
$\mathrm{VR} 1=2.6 \mathrm{v}$
$(\mathrm{VR} 2+\mathrm{Vr})=4.2 \mathrm{~V}$
$\mathrm{VR} 2=3.6 \mathrm{v}$
g) To remove + ve peak above some level (say $+3 \mathrm{v})$:-

h) To pass -ve peak above some level (say -2v) :-

i) To remove above Vr level :-

j) To pass + ve peak above some level (say +2v) :-

k) To remove -ve peak above some level (say -3v) :-

1) To remove above some level (say $+3 v$) and
-ve peak above some level (say -3v) :-

m) To pass a part of the $=v e$ half $\operatorname{cycle}(\operatorname{say} V 1=2 v, V 2=4.2 v):-$

Circuit Diagram:-

a) Positive peak clamped at Vr level :-

b) Positive peak clamped at +ve Reference :-

Experiment No:

DATE: \qquad 1_1

CLAMPING CIRCUITS

AIM: To design a Clamping circuit for the given specifications and hence to plot - its output.

APPARATUS REQUIRED:-

Diode-IN 4007, capacitors, resistors, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connections are made as shown in the circuit diagram.
2. A square wave input Vi is applied
3. Output waveform Vo is observed on the CRO. Keeping the AC/DC switch of the CRO in DC Position.
4. Clamped voltage is measured and verified with the designed values.
c) Positive peak clamped at -ve reference level :-

d) Negative peak clamped to Vr level :-

DESIGN :-

$\mathrm{R}_{\mathrm{L}} \mathrm{C} \gg \mathrm{T}=>$ Assume $\mathrm{T}=2 \mathrm{~ms}$, let $\mathrm{R}_{\mathrm{L}} \mathrm{C}=50 \mathrm{~T}=100 \mathrm{~ms}$
Let $\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
$\therefore \mathrm{C}=1 \mu \mathrm{f}$
a) Positive peak clamped to Vr level
b) Positive clamped to + ve reference level (say +2 v) ie., $\mathrm{VR}+\mathrm{Vr}=2=>\mathrm{VR}=2-\mathrm{Vr}=2-0.6=1.4 \mathrm{v}$
c) Positive peak clamped to - ve reference level (say -2 v)

$$
\text { ie., }-\mathrm{VR}+\mathrm{Vr}=-2=>\mathrm{VR}=2.6 \mathrm{v}
$$

d) Negative peak clamped to Vr level
e) Negative peak clamped to + ve reference level $($ say $+2 v)$ ie., $\mathrm{VR}-\mathrm{Vr}=2 \Rightarrow \mathrm{VR}=2.6 \mathrm{v}$
f) Negative peak clamped to -ve reference level (say -2 v)

$$
\text { ie., }(\mathrm{VR}+\mathrm{Vr})=-2=>\mathrm{VR}=1.6 \mathrm{v}
$$

e) Negative peak clamped at +ve reference level :-

f) Negative peak clamped at -ve reference level :-

RESULT :-

Circuit Clamping level (Designed) Clamping level (Observed)
a)
b)
c)
d)
e)
f)

Circuit Diagram:-

INVERTING AMPLIFIER:-

NONINVERTING AMPLIFIER:-

VOLTAGE FOLLOWER:-

Experiment No:

DATE:

\qquad

LINEAR APPLICATIONS OF OP-AMP

To design and test Operational amplifier applications: (1)Inverting
AIM: Amplifier, (2) Non-Inverting Amplifier, (3) Summer, (4) Voltage Follower,
(5) Integrator and Differentiator.

APPARATUS REQUIRED:-

Op-Amp - AA 741, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Give the input signal as specified
3. Switch on the dual power supply.
4. Note down the outputs from the CRO.
5. Draw the necessary waveforms on the graph sheet.
6. Repeat the procedure for all circuits.

DESIGN:-

a) Inverting Amplifier: Let $\mathrm{Av}=10=\frac{-R f}{R i}$

$$
\text { Assume } \mathrm{Ri}=1 \mathrm{k} \Omega \therefore \mathrm{Rf}=10 \mathrm{~K} \Omega, \mathrm{Ri}=10 \mathrm{~K} \Omega
$$

b) Non Inverting Amplifier Let $\mathrm{Av}=11=1+\frac{R f}{R i}$

$$
\text { Assume } \mathrm{Ri}=1 \mathrm{k} \Omega \quad \therefore \mathrm{Rf}=(11-1) \times R i=10 k \Omega
$$

c) Voltage follower $\mathrm{Av}=$ unity.

SUMMER:-

DIFFERENTIATOR:-

INTEGRATOR:-

DESIGN:-

a) Integrator

RC>>T
Let $\mathrm{T}=1 \mathrm{msec}$ and $\mathrm{RC}=100 \mathrm{~T}=100 \mathrm{msec}$
Assume $\mathrm{R}=100 \mathrm{~K} \Omega \therefore \mathrm{C}=1 \mu \mu$
Assume $\mathrm{Rf}=10 \mathrm{~K} \Omega$

b) Differentiator:-

$\mathrm{RC} \ll \mathrm{T}$
Let $\mathrm{T}=1 \mathrm{msec}$ and $\mathrm{Rc}=0.01 \mu \mathrm{f}$
Assume $\mathrm{R}=1 \mathrm{~K} \Omega$

c) Summer:-

Let $\mathrm{Y}=2 \mathrm{~V} 1+\mathrm{V} 2+3 \mathrm{~V} 3=\frac{R f}{R 1} V 1+\frac{R f}{R 2} V 2+\frac{R f}{R 3} V 3$
i.e, $\therefore \frac{R f}{R 1}=2, \frac{R f}{R 2}=1$ and $\frac{R f}{R 3} V 3$

Assume $\mathrm{Fr}=10 \mathrm{k} \Omega \therefore \mathrm{R} 1=5 \mathrm{~K} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$ and $\mathrm{R} 3=3.33 \mathrm{k} \Omega$
Assume $\mathrm{R}=10 \mathrm{k} \Omega$

Circuit Diagram:-

Schmitt trigger with zero-reference

Schmitt trigger with positive reference

Comparator: Zero Crossing Detector

$$
\begin{array}{ll}
V_{0}=+V_{\text {sat }}, & \text { when } V_{i}<0 \\
V_{0}=-V_{\text {sat }}, & \text { when } V_{i}>0
\end{array}
$$

Experiment No:

DATE: \qquad _1_1

SCHMITT TRIGGER

To design and test USING Operational amplifiers for the performance of:
AIM: (1)Zero Crossing Detector, (2) Schmitt Trigger for different hysterisis values.

APPARATUS REQUIRED:-

Op-Amp $-\mu \mathrm{A} 741$, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. For a zero crossing detector, connect the non-inverting terminal to ground.
3. Switch on the dual power supply.
4. Observe the output waveform on the CRO
5. Draw the output and input waveforms.
6. For Schmitt Trigger set input signal (say 1V, 1 KHz) using signal generator.
7. Observe the input and output waveforms on the CRO.
8. Plot the graphs: V_{i} vs Time, V_{O} vs Time.

Schmitt trigger with negative reference

Design

Given, $V_{R}=0$ and $\pm V_{\text {sat }}= \pm 12 \mathrm{~V}$.
Assume, $V_{b 1}=V_{b 2}$

WAVE FORMS:-

DESIGN:-

Let $\mathrm{UTP}=6 \mathrm{~V}=\Rightarrow \frac{V R R I}{R 1+R 2}+\frac{V \operatorname{satR2}}{R 1+R 2}$

LTP $=-2 \mathrm{~V}=\Rightarrow \frac{V R R I}{R 1+R 2}+\frac{V \operatorname{sat} R 2}{R 1+R 2}$

Assume $\mathrm{V}_{\text {sat }}=12 \mathrm{~V}$
$\mathrm{UTP}+\mathrm{LTP}=4=\frac{2 V R R I}{R 1+R 2} \Rightarrow V R=\frac{2(R 1+R 2)}{R 1}=2\left(1+\frac{R 2}{R 1}\right)$

UTP - LTP $=8=\frac{2 V \operatorname{sat} R 2}{R 1+R 2} \Rightarrow V R=\frac{R 1}{R 2}=2$
$\therefore \mathrm{VR}=3 \mathrm{~V}$, Assume $\mathrm{R} 2=1 \mathrm{~K} \Omega \Rightarrow \mathrm{R} 1=2 \mathrm{~K} \Omega$
$I I I^{\text {ly }}$ design for UTP $=+4,+8,+2$ and -2.

$$
\text { LTP }=-4,+2,-4 \text { and }=4
$$

RESULT: -UTP and LTP is measured and compared with the designed value.

FULL WAVE PRECISION RECTIFIER:-

DESIGN:-

(i) Given $\mathrm{A}=\frac{5}{0.5}=10=\frac{\mathrm{Rf}}{\mathrm{Ri}}$

Assume $\mathrm{Ri}=1 \mathrm{k} \Omega, \therefore \mathbf{R f}=10 \mathrm{~K} \Omega$
Choose $\mathrm{R}=10 \mathrm{~K} \Omega$
$R f^{\prime}=\mathbf{R f}=10 K \Omega$
(ii) Given $\mathrm{A} 1=\frac{5}{0.5}=10=\frac{R f}{R i}$ and $\mathrm{A} 2=\frac{3}{0.5}=6=3 \frac{R f}{R i}\left(\frac{R f^{\prime}}{2 R+R f^{\prime}}\right)$

Assume $\mathbf{R i}=1 \mathrm{~K} \Omega$
$R f=10 K \Omega$ and $\mathrm{Rf}^{\prime}=5 \mathrm{~K} \Omega$

Experiment No:

DATE: \qquad _1_1

FULL WAVE PRECISION RECTIFIER

AIM:
To test for the performance of Full wave Precision Rectifier using Operational Amplifier.

APPARATUS REQUIRED:-

Op-Amp $-\mu \mathrm{A} 741$, capacitors, resistor, Dual power supply, Regulated power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Give a sinusoidal input of VPP, 1 KHz from a signal generator.
3. Switch on the power supply and note down the output from CRO.
4. Without Connecting Rf 2, the wave form of the half wave rectifier is produced.
5. At some value of $\operatorname{Rf} 2$ the wave form of a full wave rectifier is obtained.
6. Repeat the above procedure by reversing the diodes.

RESULT:-

The operation of the precision rectifier is studied using $\mu \mathrm{A} 741$.

CIRCUIT DIAGRAM: - (HIGH VOLTAGE)

DESIGN:-

$$
\begin{aligned}
& \text { Given } V_{O}=12 v \\
& V_{o}=7.15\left[1+\frac{R_{1}}{R_{2}}\right] \\
& 12=7.15\left[1+\frac{R_{1}}{R_{2}}\right]
\end{aligned}
$$

Assume $\mathbf{R}_{1}=10 \mathrm{~K} \Omega$
$\therefore R_{2}=17.7 \mathrm{~K} \Omega$ [use $15 \mathrm{~K} \Omega$]
Assume $R_{L}=720 \Omega \& C=100 p f$

CHARACTERISTIC CURVE: -

OBSERVATION:-

Vi (volts)	Vo (volts)

Experiment No:

DATE: \qquad 1 1

VOLTAGE REGULATOR USING IC 723

AIM: - To design and test the IC 723 voltage regulator.

APPARATUS REQUIRED:-

IC 723, capacitors, resistor, power supply, CRO, function generator, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Switch on the power supply and note down the output from CRO.
3. Vary the input voltage from 7 V , note down corresponding output voltage.
4. Draw the regulation charectistics.

CIRCUIT DIAGRAM: - (LOW VOLTAGE)

DESIGN:-

For LM723 $\mathrm{V}_{\text {ref }}=\mathbf{7 . 1 5 V}$
$V_{o}=7.15\left[\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}+2}\right]$
Let the devider current I_{0} through the resistor $R_{1} \& R_{2}$ is 1 mA . Since error amplifier draws very little current, we will neglect its input bias current.
Hence $R_{1}=\frac{V_{\text {ref }}-V_{O}}{I_{D}}=\frac{7.15-6}{1 \times 10^{3}}=1.1 \mathrm{~K} \Omega$

$$
\begin{aligned}
& R_{2}=\frac{V_{0}}{I_{D}}=\frac{6}{1 \times 10^{3}}=6 \mathrm{~K} \Omega \\
& R_{3}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=
\end{aligned}
$$

Assume $\mathrm{C}_{1}=0.1 \mu \mathrm{~F} \& \mathrm{C}_{2}=100 \mathrm{PF}$

PROCEDURE:-

1. Connect the circuit as per the circuit diagram.
2. For line regulation vary the input voltage from 7 V , note down the corresponding output voltage.
3. Draw the transfer characteristics.
4. For load regulation note down the output current.
5. Draw the transfer characteristics.

GRAPH:-

(i) Line Regulation

(ii) Load Regulation

OBSERVATION:-

(i) Line Regulation			(ii) Load Regulation	
Vi (volts)	Vo (volts)		Vi (volts)	Vo (volts)

CIRCUIT DIAGRAM: -

$$
V_{0}=-R_{f}\left[\frac{b_{3}}{2 R}+\frac{b_{2}}{4 R}+\frac{b_{1}}{8 R}+\frac{b_{0}}{16 R}\right] \times V_{\text {ref }}
$$

Note: -

1. $\mathrm{b}_{3}, \mathrm{~b}_{2}, \mathrm{~b}_{1}$ and b_{0} are binary input.
2. $\mathrm{V}_{\mathrm{ref}}=5 \mathrm{~V}$.
3. If b is the decimal value of the binary input $b_{3}, b_{2}, b_{1}, b_{0}$, then $\mathbf{V}_{\mathbf{0}}=\frac{-\mathbf{V}_{\text {ref }}}{\mathbf{8}} \times \mathbf{b}$
4. Vo is the analog output
5. Binary inputs can either take the value 0 or 1
6. Binary input b_{i} can be made 0 by connecting the input to the ground. It can be made 1 by connecting to +5 V

Experiment No:

DATE: \qquad

VOLTAGE REGULATOR USING IC 723

AIM: - \quad To design 4 bit R-2R ladder DAC using op-amp.

APPARATUS REQUIRED:-

IC 723, resistor, power supply, CRO, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. The IC is given proper bias of ' +12 V ' and ' -12 V ' to ' Vcc ' and 'Vee' respectively.
3. According to the binary values of b_{3}, b_{2}, b_{1} and $b_{0}, b_{3}, b_{2}, b_{1}$ and b_{0} are connected to ' +5 V ' or 'Ground' respectively.
4. The o/p voltage is tabulated for different binary inputs and is compared with the theoretical values.

$\underline{\mathbf{O} / \mathrm{P} \text { vs I/P }}$

Decimal equivalent of binary input ($b 3, b 2, b 1, b 0$)

Tabular Column:-

Inputs				Output (volts)	
$\mathbf{b}_{3} \mathbf{b}_{2}, \mathbf{b}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{0}}$	Practical	Theoretical		
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$		
0					
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

CIRCUIT DIAGRAM: - (2 BIT Flash type ADC)

Experiment No:

DATE: \qquad

ANALOG TO DIGITAL CONVERTOR

AIM: - To rig up circuit to convert an analog voltage to its digital equivalent

APPARATUS REQUIRED:-

IC LM 324, IC 7400, resistor, power supply, multimeter, etc.

PROCEDURE: -

1. Connect the circuit as per the circuit diagram.
2. Verify the digital O / P for different analog voltages.

Note:- (1). Connect $\mathrm{V}+($ pin 4$)$ terminal of the OPAMP to +5 V
(2). Connect V- (pin 11) terminal of the OPAMP to ground

Design: Number of comparators required $=2 n-1$
Where $\mathrm{n}=$ desired number of bits
$\mathrm{C} 1, \mathrm{C} 2 \& \mathrm{C} 3=$ Comparator o/p
D0 \& D1 = Encoder (Coding network) O/P

PIN DIAGRAM:-

Tabular Column:-

Analog I/P Vin	C3	C2	C1	D1	D0
0 to $v / 4$	0	0	0	0	0
V/4 to $V / 2$	0	0	1	0	1
V/2 to 3V/4	0	1	1	1	0
$3 V / 4$ to V	1	1	1	1	1

